
Focus on Microbial Consortia

Review
Modular Metabolic Engineering for Biobased
Chemical Production
Hongyuan Lu,1 Juan C. Villada, and Patrick K.H. Lee*
Highlights
Microbial cell factories for the produc-
tion of biobased chemicals are a pro-
mising route to achieve a sustainable
future. However, it is essential to
address metabolic imbalances caused
by engineered pathways in microbial
hosts.

Multivariate modular metabolic engi-
neering (MMME) and modular cocul-
ture engineering (MCE) can
reconstitute the metabolic balance
by modularizing the synthetic path-
ways and globally fine-tuning the
expression levels of pathway modules
in single or multiple hosts.

The cross-cultural modular design of
MCE significantly reduces the time and
difficulty of reconstituting long syn-
thetic pathways in a single host and
polycultures enable the synthesis of
complex compounds.

Computer-aided genome minimization
coupled with designing orthogonal
metabolic pathways (independent
from biomass synthesis) can open
new paths to optimize microbial strains
in a modular synthetic community.
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Microorganisms can manufacture a wide range of biobased chemicals that are
useful for diverse industrial applications. However, the overexpression of het-
erologous enzymes in recombinant strains often leads to metabolic imbalance,
resulting in growth retardation and suboptimal production of the target com-
pounds. Here we discuss the recent development of modular metabolic engi-
neering approaches that enable the global fine-tuning of engineered pathways
by modularizing the synthetic pathway in single or multiple hosts. In particular,
we highlight applications with microbial consortia. To build a vibrant biobased
economy, multivariate modular metabolic engineering (MMME), modular cocul-
ture engineering (MCE), and spatiotemporal and integrative genome-scale
metabolic modeling can be exploited to expedite strain optimization and
improve the production of a broad variety of high-value biobased chemicals.

Building a Biobased Economy with Modular Engineering
The production of bulk and fine chemicals biologically from renewable resources has proved to
be an attractive route to replace nonsustainable petrochemical-based chemical production [1].
It is estimated that the production of biobased chemicals can yield an annual revenue of US
$10–15 billion in the global chemical industry by 2020 [2]. In particular, specialty chemicals (e.
g., natural products) that are difficult or impossible to produce by traditional chemical methods
represent a promising starting point to establish a biobased economy.

The development of recombinant DNA technology along with the use of model organisms
(see Glossary) has substantially improved our ability to program the microbial cell factories with
the desired phenotypes. However, the engineering of endogenous genes and insertion of
heterologous pathways into recombinant strains often result in metabolic imbalance, leading to
growth retardation and suboptimal production of the target compounds [3]. This drawback is
especially evident with compounds that require long and complex synthesis pathways (e.g.,
natural products such as isoprenoids and flavonoids), owing to overwhelming metabolic
stresses from overexpressing a large set of pathway genes [4].

Fortunately, natural systems have provided metabolic engineers with clues to overcome this
obstacle. To balance metabolic fluxes in nature, higher organisms partition metabolic pathways
into various modules via organelle compartmentalization, while microscopic organisms achieve
the same objective via microbial consortia [5]. This concept of modularizing synthetic pathways
has provided new strategies for the systematic optimization of engineered strains. In modular
metabolic engineering, enzymes in pathways are grouped into a series of interacting modules
to constrain genetic design and reconstitute metabolic balance. Distinct from the traditional
metabolic engineering approaches that separately assess parts of the synthetic pathway
sequentially, modular metabolic engineering holistically examines the entire synthetic pathway
and cooperatively modulates the expression levels of each pathway module to enable global
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Glossary
Cellular resources: energy
molecules [e.g., NAD(P)H, ATP] and
various pathway-dependent building
blocks (e.g., nucleotides, lipids,
amino acids).
CRISPR–Cas9: a genome-editing
technique that can effectively alter
the genome of both model and
nonmodel organisms. A typical
CRISPR–Cas9 system comprises a
Cas9 nuclease that cleaves double-
stranded DNA, guide RNA that
provides targeting specificity for the
Cas9 nuclease, and a repair module
that stitches the double-stranded
break.
CRISPR interference (CRISPRi): a
genetic perturbation technique
derived from the CRISPR–Cas9
system. It utilizes a deactivated Cas9
nuclease and a customizable single
guide RNA to silence target genes at
the transcriptional level.
Dynamic flux balance analysis
(DFBA): a variant of FBA that
accounts for the accumulation of
biomass and metabolites in the
environment. It then computes the
corresponding redistribution of
metabolic fluxes over time. DFBA
can also model diverse fluctuations in
the environment (e.g., pH dynamics,
fed-batch systems). DFBA is useful
for modeling and predicting
metabolic behavior over changing
concentrations of the feedstocks and
products as well as at different
stages of population density.
Flux balance analysis (FBA): a
technique that computes the optimal
distribution of metabolic fluxes in a
given metabolic network as provided
by its GSM. Constraints are applied
to optimize a predefined reaction in
the GSM. The distribution of fluxes
and prediction of growth rates can
be analyzed when optimizing the
reaction that synthesizes biomass.
FBA can be applied to many
research questions in biotechnology.
For example, the optimization
objective can be a reaction of
interest that would increase the
production rate of biobased
chemicals. The impact on the flux
distribution of metabolites by single
or multiple gene knockouts and other
metabolic engineering strategies can
also be investigated through FBA.
Genome-scale metabolic model
(GSM): a mathematical
fine-tuning of the metabolic network [4]. For example, enzymes with comparable catalytic
turnover rates are often assembled into an operon. Subsequently, the expression levels of
enzymes in a module are tuned simultaneously to equalize the turnovers of different modules,
directing the metabolic flux towards the production of the target chemical. In addition, pathway
modules that have been constructed and optimized can be further rewired in a plug-and-play
fashion to produce diverse compounds, significantly reducing the time and resource invest-
ment in metabolic engineering [6,7]. In parallel, as modules and microbial cocultures become
more elaborate, new computational tools are required to process the increasing scales of data
and solve the mathematical formulations used to model the biology of multiple metabolic
modules.

In the past few years, significant progress has been made in applying modular engineering
strategies to address metabolic imbalances in microbial hosts to promote overall cell fitness
and product yield. Initially, through modularizing the synthetic pathways in a single host,
MMME has emerged as an effective strategy to reconstitute metabolic balance and improve
metabolite production [4]. The modular pathway design not only expedites strain optimization
but also facilitates pathway refactoring to improve the production of a wide range of biobased
chemicals. More recently, the modularity concept has been further extended to segregate the
synthetic pathways into two or more hosts by MCE [7]. The synergetic effects of multiple
constituent strains offer advantages over a single strain, thereby further elevating the pro-
ductivity of biobased chemicals. In this review we focus on the concept of modularity and
present the recent development of modular metabolic engineering for biobased chemical
production, placing particular emphasis on MCE. Furthermore, we discuss how the recent
development of computational and analytical tools for modular pathway analysis, design, and
optimization are systematizing the fields of MMME and MCE and expediting the development
of modular strain and coculture engineering for efficient biobased chemical production
(Figure 1, Key Figure).

MMME: A Focused Combinatorial Engineering Approach
Throughout evolution, microorganisms have developed a tightly regulated and balanced
metabolism [8]. However, such a balanced metabolism is often missing in engineered strains
since their native pathways have been reconfigured to overproduce value-added metabolites.
As a consequence, metabolic fluxes within the biochemical network of engineered hosts are
often imbalanced, resulting in pathway bottlenecks that may penalize cell fitness and
pathway productivity [9,10]. Therefore, fine-tuning of the engineered pathways is essential
to unlock the full potential of cell factories in biobased chemical production.

Early metabolic engineering efforts typically relied on rational engineering approaches (Box 1).
Although moderate strain improvements were achieved, these approaches generally lacked a
holistic consideration of the interconnectedness of cellular metabolism and focused on only
examining individual parts of a pathway, neglecting the fact that interactions within a pathway
are mostly complex and nonlinear [11]. Consequently, improvements were often limited to the
local yield maxima of a pathway. To achieve the global optimal yield, combinatorial engineering
(Box 1) can be implemented to generate a large phenotype space by randomly and simulta-
neously optimizing multiple enzymes within a pathway, enabling global fine-tuning of pathways
[12]. However, evaluating the performance of such a large metabolic space requires a sensitive
high-throughput screening assay, which is often lacking for many desired molecules [13].

To circumvent the challenges associated with combinatorial engineering, MMME has emerged
as a focused, combinatorial engineering approach to generate a rationale-based but relatively
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representation of a metabolic
network. The model comprises a
matrix of stoichiometric coefficients
corresponding to the biochemical
reactions and compounds
constituting the metabolism of an
organism. Reactions in the model are
primarily derived from and explicitly
associated with genes in the genome
of an organism. Subsequent manual
refinement, imposition of constraints
based on physiological experiments,
and integration of omics data can
improve the prediction power of
GSMs.

Key Figure

Modular Engineering Approaches for Biobased Chemical Production.
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Figure 1. Experimental and computational approaches are deployed in concert in multivariate modular metabolic engineering (MMME) and modular coculture
engineering (MCE) for effective biobased chemical production.

Box 1. Rational Engineering and Combinatorial Engineering

The rational engineering strategy requires detailed knowledge of the metabolic pathways so that metabolic flux is
correctly directed towards pathways of interest by overexpression of the rate-limiting enzymes, gene deregulation, and/
or knocking out competing pathways. However, one inherent limitation of this strategy is that after one rate-limiting
bottleneck in a pathway is eliminated, new and unexpected constraints are often simultaneously generated somewhere
else in the same or a different pathway due to the interdependency within and between pathways [10]. Although multiple
rounds of strain construction, selection, and optimization could improve strain performances, such an iterative design–
build–test–learn cycle is often labor intensive, time consuming, and expensive.

By contrast, unlike the knowledge-driven approaches, the combinatorial engineering strategy requires minimal knowl-
edge about the metabolic pathway of interest. This strategy typically relies on random mutagenesis to enable sampling
of a large phenotype space for the identification of strains that exhibit the desirable phenotype. A high-throughput assay
is required to screen the large phenotype space to identify the superior strain in the mutant library.
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Model organisms: typically include
organisms such as Escherichia coli,
Saccharomyces cerevisiae, and
Bacillus subtilis that have been
extensively studied. They are ideal for
research or industrial applications
due to their intrinsic characteristics
and ease of experimental
manipulation.
Modular coculture engineering
(MCE): an approach that segregates
a complex pathway into a series of
modules and isolates the individual
pathway modules into different
strains to improve the desired
biosynthesis performance. As a result
of the synergetic effects of multiple
constituent strains, MCE provides a
viable and attractive option for
microbial consortium engineering of
synthetic pathways.
Multivariate modular metabolic
engineering (MMME): an approach
that partitions a complex pathway
into simpler distinct modules to
enable parallel optimization,
simultaneous variation of the
expression of each module, and the
assembly of various modules to
generate an engineered strain library.
Finally, by using a multivariate
statistical analysis, an optimal strain
with a balanced metabolic flux can
be efficiently determined.
Pathway bottlenecks: pathway
constraints such as redox imbalance
from unmatched precursor or
cofactor specificity, feedback
inhibition due to accumulation of
toxic or unstable intermediates, and
diversion of resources to competing
pathways.
sRNA devices: synthetic small
regulatory RNA tools that can
manipulate post-transcriptional
regulation by interacting with the 50

untranslated region of the mRNA.
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Figure 2. Commonly Used Tools for Modulating the Relative Expression of Pathway Modules. To minimize
intrinsic constraints (e.g., plasmid-associated metabolic burden, allele segregation, instability) associated with a single
regulatory tool and to enable tighter modular expression in multivariate modular metabolic engineering (MMME), the above
regulatory tools are often employed in concert (e.g., altering promoter strength and plasmid copy number simultaneously is
most widely implemented in MMME studies).
narrowed combinatorial space [4]. This approach partitions a complex pathway into simpler
distinct modules that allow parallel optimization based on moderate a priori knowledge about
the synthetic pathway, such as metabolite biochemistry (e.g., toxicity) [14], pathway branching
[15], and catalytic turnover [16]. Subsequently, the expression levels of each module are
cooperatively modulated towards an optimally balanced pathway where the input and output
of the connected modules are synchronized to sustain sufficient enzymatic activity and
minimize metabolic load on excessive protein synthesis. The relative expression levels of
the pathway modules can be finely tuned by various regulatory tools (Figure 2). The principles
related to MMME have recently been reviewed in the literature [12,13] and are not emphasized
here.

MCE: A Spatial Pathway Modularization Approach
Despite the progress in engineering single strains, the construction and optimization of
biosynthetic pathways in a single host are still hampered by several intrinsic limitations. First,
the difficulty of gene cloning in a single host increases with the number of exogenous genes that
have to be introduced, mainly due to the challenges of expressing multiple cassettes or plasmid
construction for various genes [4]. Second, even if the desired genes can be constructed in a
single host, constitutive expression of a large number of heterologous enzymes can easily
overexploit cellular resources [3], thereby overloading the host with an excessive metabolic
burden that impairs cell viability and product synthesis. Third, a single host is restricted to a
monocellular environment, which often fails to meet all of the special conditions required by the
enzymes involved [17]. Fourth, undesirable interference can occur among reactions in the
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Figure 3. Advantages of a Multihost System over a Single-Host System.
synthetic pathway when an intermediate of one reaction negatively influences another metab-
olite [18].

As a spatial pathway modularization approach, MCE can potentially overcome all of these
barriers. The principle of coculture-based strategy is to modularize heterologous metabolic
pathways and assign pathway modules to different hosts in a system for the optimal functioning
of the complete pathway [7]. Different from MMME, the individual pathway modules are
physically arranged into separate hosts; therefore, the metabolic reactions are isolated from
one another in different cells. Compared with the single-host approach, such a multistrain
system significantly reduces the time and difficulty of reconstituting long synthetic pathways, as
the cross-cultural modular design allows parallel construction of the separate hosts carrying the
partial pathways and reduces the number of genetic modifications in each host. The employ-
ment of multiple strains with unique functions and characteristics offers distinct advantages
over a single-host system, including labor division that substantially lightens the metabolic
burden on constituent individuals [19], spatial segregation that prevents negative cross-influ-
ences among pathway modules [18], beneficial microbial interactions that promote cell fitness
and productivity [7], diversified intracellular environments that accommodate the functional
expressions of a larger variety of heterologous enzymes [7], and versatile metabolisms that
allow greater functional flexibility [20] when different species are incorporated as workhorses
(Figure 3).

Host Selection and Pathway Division
One dilemma in MCE is whether to employ strains derived from the same or different species,
as either choice has its own merits and defects. Ideally, a multispecies system can exploit the
strengths of each species, such as their unique physiochemical properties and biosynthesis
capabilities. For instance, while bacteria (e.g., Escherichia coli) can rapidly produce proteins,
yeast (e.g., Saccharomyces cerevisiae) excel at manufacturing sophisticated eukaryotic
156 Trends in Biotechnology, February 2019, Vol. 37, No. 2



proteins that require advanced protein-folding machineries [21]. In a study by Zhou and
colleagues, these advantages were combined by coculturing E. coli and S. cerevisiae together
for oxygenated taxane production, resulting in a yield (33 mg/l) that was significantly higher than
the monospecies E. coli–E. coli counterpart (0.8 mg/l) [7]. However, the drawback of a
multispecies system is that the consortium composition can be unstable as one species
can easily outgrow another due to different cell growth rates [17]. Although adjusting the
growth conditions (e.g., pH, temperature, oxygen level) or inoculum ratio can partially mitigate
the problem of culture instability [22], more complex approaches are needed to maintain
growth compatibility, such as introducing interspecies metabolic interactions via cross-feeding
[19].

In terms of microbial chassis, current MCE studies have mainly deployed traditional model
organisms to take advantages of their aerobic and fast-growing characteristics in addition to
well-developed genetic tools [8]. However, with the development of more sophisticated
genome editing tools [e.g., sRNA devices, clustered regularly interspaced short palindromic
repeats and the associated protein Cas9 (CRISPR–Cas9), CRISPR interference
(CRISPRi)], the host candidates have now been expanded to nonmodel organisms that were
traditionally difficult to manipulate but have a unique proficiency or cellular environment for
specific enzymatic functions. One good example is that the Clostridium species-mediated
acetone–butanol–ethanol (ABE) fermentation pathway was previously engineered into an E.
coli–E. coli coculture system for n-butanol production, achieving the highest titer of 5.5 g/l from
glucose [23]. Recently, however, using CRISPRi and an optimized electroporation technique,
the ABE fermentation pathway was successfully engineered in a twin-clostridial consortium,
increasing the n-butanol production to 11.5 g/l [24].

One critical consideration of the MCE design is that the conjunctive intermediates connecting
different pathway modules are required to travel efficiently between cells so that the partial
pathways in separate cells can be reconnected as one complete pathway [25]. However, some
intermediates (e.g., coenzyme A, phosphorylated compounds) have no or limited ability to
cross cell membranes, disqualifying them as suitable conjunctive molecules. In this situation,
transporter engineering offers a chance to enhance the transportability of the target inter-
mediates [26]. However, when transporter engineering of the target intermediates is challeng-
ing or infeasible, an easier solution is to rationally divide the pathway so that other transportable
molecules act as the conjunctive intermediates.

Microbial Interactions as Strategies to Improve Production
Microbial interactions are ubiquitous in natural consortia and are crucial in determining the
functionality, stability, and dynamics of communities [27]. In MCE, microbial interactions can be
exploited to improve the viability and productivity of cells. In general, mutualistic interactions are
built between the employed strains as such a relationship can benefit the interacting strains,
thus promoting the overall desired performance [19]. To establish a mutualistic coculture, the
interacting partners can be designed to lean on each other for the exchange of essential
nutrients or detoxification of inhibitory substances. For instance, although oxygenated taxanes
could be produced from an E. coli–S. cerevisiae coculture when grown on glucose, the cell
growth and taxane titers of E. coli were largely inhibited by the accumulated ethanol produced
by S. cerevisiae. To tackle this problem, the sole carbon source was switched to xylose, which
can be utilized only by E. coli and not by S. cerevisiae. Thus, S. cerevisiae obligately relied on the
acetate produced by E. coli as the sole carbon source for growth without producing the toxic
ethanol. Meanwhile, acetate consumption by S. cerevisiae also mitigated acid inhibition in the
coculture. As a result, this mutualistic coculture increased oxygenated taxane production by
Trends in Biotechnology, February 2019, Vol. 37, No. 2 157



15.5 times over that of a control without a mutualistic design [7]. In addition to mutualism,
exploration of other modes of interaction (e.g., competition, predation, amensalism, commen-
salism) for the design and optimization of modular coculture is also possible when special traits
or controllable mechanisms are required to improve target compound production [27].

MMME and MCE Expedite Strain Optimization and Facilitate Pathway
Refactoring
In recent years, MMME and MCE have been successfully applied to enable global fine-tuning of
cellular reactions to substantially enhance the production of a wide range of value-added
chemicals including alcohols (e.g., n-butanol, monolignol) [18,23,24,28], acids (e.g., cis,cis-
muconic acid, 4-hydroxybenzoic acid, 2-keto-L-gulonic acid, 3-amino benzoic acid)
[14,20,29–31], and natural products (e.g., isoprenoids, flavonoids) [4,6,7,16,22,32–39], which
are important in the biofuel, chemical and pharmaceutical industries (Table 1 and 2). By taking
advantage of the modularity of microbial partnerships, the overall titer, yield, and productivity of
the target products in the cocultures have been significantly improved compared with their
monoculture counterparts.
Table 1. Selected MMME Studies for Biobased Chemical Production

Product Carbon
source

Organism Number of
modules

Number of
engineered
strain library

Engineering approach to modulate
the expression of pathway modules

Titer (mg/l) Refs

N-Acetylglucosamine Glucose Bacillus subtilis 3 7 Expressed various combinations of
synthetic small regulatory RNAs and
Hfq protein; promoter manipulation

8300 [15]

Fatty acids Glucose Escherichia coli 3 17 Plasmid copy number variation;
promoter manipulation; varying
antibiotic resistance marker; altering
ribosome-binding sites

8100 [14]

Miltiradiene Glucose Saccharomyces
cerevisiae

2 9 Plasmid copy number variation 61.8 [35]

Taxadiene Glucose E. coli 2 32 Plasmid copy number variation;
promoter manipulation;
chromosomal integration

1000 [4]

Isoprene Arabinose E. coli 2 84 Promoter manipulation 17.5 [36]

Medium-chain fatty acids Glucose E. coli 2 24 Plasmid copy number variation;
promoter manipulation

3800 [31]

(2S)-Pinocembrin Glucose E. coli 4 4 Plasmid copy number variation;
promoter manipulation; gene codon
usage

40 [37]

(2S)-Pinocembrin Glucose E. coli 4 17 Plasmid copy number variation;
promoter manipulation

432.4 [38]

Resveratrol L-Tyrosine E. coli 3 18 Plasmid copy number variation;
promoter manipulation

35 [16]

(2S)-Naringenin Glucose E. coli 3 13 Plasmid copy number variation;
promoter manipulation

100.6 [6]

Pinosylvin Glucose E. coli 2 20 Plasmid copy number variation;
promoter manipulation

281 [39]

b-Carotene Glucose E. coli 5 12 Interchanging promoters and mRNA-
stabilizing regions

2100 [69]
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Table 2. Selected MCE Studies for Biobased Chemical Production

Product Carbon source Organism Titer (mg/l) Remark Refs

Oxygenated taxanes Xylose Escherichia coli–
Saccharomyces
cerevisiae

33 [7]

Monoacetylated
dioxygenated taxane

1.1 First report of microbial production of a monoacetylated,
dioxygenated taxane from xylose

Ferruginol 18 Exceeded the highest titer reported, of 10 mg/l by S.
cerevisiae

Nootkatone 4

Nootkatol 30

cis,cis-Muconic acid Glucose/xylose
mixture

E. coli–E. coli 4700a Achieved 19-fold titer increase over monoculture [20]

4-Hydroxybenzoic acid 2300a Equaled the highest titer reported previously

Thebaine Glycerol Four E. coli NR Achieved yield of 2.1 mg/l, which is 300-fold higher than the
previously reported yeast system [70]

[34]

Hydrocodone NR Achieved yield of 0.4 mg/l

Afzelechin Glucose Three E. coli 26.1 De novo production of flavan-3-ol and anthocyanidin-3-O-
glucoside for the first time in a microbial host

[25]

Callistephin Four E. coli 9.5

Flavan-3-ol p-Coumaric acid E. coli–E. coli 40.7 Achieved 970-fold titer increase over monoculture; first
application of empirical modeling techniques to enhance
production titer of a coculture system

[22]

Caffeyl alcohol p-Coumaryl alcohol E. coli–E. coli 401
854.1a

Achieved 12-fold titer increase over monoculture [18]

Coniferyl alcohol 124.9 First report of microbial production of caffeyl alcohol and
coniferyl alcohol

n-Butanol Glucose E. coli–E. coli 5500 Achieved twofold titer increase over monoculture and 69% of
the theoretical yield

[23]

Acetone Alkali-extracted,
deshelled corncobs

Clostridium cellulovorans
DSM 743B–Clostridium
beijerinckii NCIMB 8052

4250 Achieved 87.2% total solvent titer increase over the author’s
previously established twin-clostridial consortium without
genetic manipulation of C. cellulovorans DSM 743B

[24]

n-Butanol 11 500

Ethanol 6370

Styrene Glucose Streptomyces lividans–
Streptomyces lividans

29 [33]

Cellobiose 16

Xylo-oligosaccharide 5.5

cis,cis-Muconic acid Glycerol E. coli–E. coli 1016
2000a

Achieved 17-fold titer increase over monoculture [41]

Resveratrol Glycerol E. coli–E. coli 22.6 First MCE report for the biosynthesis of resveratrol from
glycerol

[32]

Perillyl acetate Glucose E. coli–E. coli 21.7 Achieved 12-fold titer increase over monoculture [71]

2-Keto-L-gulonic acid D-Sorbitol Gluconobacter oxydans–
Ketogulonicigenium
vulgare

76 600 Achieved 89.7% of the theoretical yield [30]

3-Amino benzoic acid Glucose E. coli–E. coli 48 [29]

Succinate Glucose/xylose
mixture

E. coli–E. coli 40 000 [40]

NR, not reported.
aScale-up production in a bioreactor.
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Furthermore, the modules already optimized in MMME can be efficiently combined with new
modules to reprogram the biosynthesis pathway through part swapping and combinatorial
optimization to accelerate the production of new compounds. For example, the malonate
assimilation and coumaroyl-coenzyme A production modules employed in the resveratrol
synthetic pathway were reorganized with a new pathway module comprising chalcone isom-
erase and chalcone synthase to enable the de novo synthesis of (2S)-naringenin in E. coli. [6].
Similarly, because of the modular nature of the coculture design in MCE, the established
pathway modules in a host can also be easily modified or reassembled into a different synthetic
pathway to produce other valued-added products. For example, replacing a few heterologous
genes of the oxygenated taxane-producing pathway modules enabled the production of
sesquiterpene and other diterpenes in the same coculture, significantly expediting the pathway
refactoring processes for these value-added products [7]. In another example, by merely
swapping the downstream module in the cis,cis-muconic acid-producing coculture, 4-hydrox-
ybenzoic acid can be produced via the same upstream module contained in cells synthesizing
3-dehydroshikimic acid as a precursor [20].

In theory, employing more constituent members could enable the modular coculture system to
generate more structurally complex compounds and perform more complex functions because
the system versatility can be expanded and the pathway-associated burdens can be shared by
more dedicated members. However, most recent MCE studies [7,18,20,22–24,28–
30,32,33,40–42] have been limited to a system with only two strains, which is simpler to
design, construct, and control than a system with more than two hosts. The deployment of
modular polycultures remains in the early stage, but three recent studies have clearly demon-
strated the feasibility of modularizing synthetic pathways in multiple hosts. Nakagawa and
colleagues developed a sequential polyculture comprising four E. coli strains for opiate
biosynthesis, achieving a yield of 2.1 mg/l, which is 300 times higher than a yeast monoculture
[34]. Although the stepwise segregated fermentation strategy utilized could enable greater
control over the process, it comes at a price of losing beneficial microbial interactions and
creating several scale-up concerns such as increased capital costs for multiple reactors and
higher process operation and maintenance costs. In another example, Jones and colleagues
constructed a de novo anthocyanin-producing pathway by distributing 15 heterologous genes
across four E. coli strains [25], which were cultured together as a consortium in a consolidated
process. In addition, although the final product was not a chemical compound, Liu and
colleagues established a three-species (E. coli, Bacillus subtilis, and Shewanella oneidensis)
microbial consortium to convert glucose to electricity [43], illustrating the promise of poly-
cultures with multiple different species for biobased chemical production.

Challenges of Implementing MMME and MCE
Although MMME offers a viable option to reconstitute metabolic balance, the key experimental
challenge of implementing this approach is that the construction of multiple modules in a single
host needs to be carefully designed to avoid overexploitation of cellular resources (e.g., the
energy metabolism for ATP synthesis in a host is limited). However, MMME typically relies on a
plasmid-based approach to construct multiple pathway modules. The maintenance of high-
copy-number plasmids and multiple pathway modules can significantly increase ATP expen-
diture, resulting in deleterious effects on cell fitness and product yield. Therefore, MMME is
applicable only when the energy metabolism of the host is sufficient to supply the energy
expenditure of each pathway module [9]. To this end, metabolic engineers should consider
exploiting native pathways as partial synthetic pathways and refraining from constructing
pathway modules that require excessive energy expenditure [44]. In addition, the application
of chromosomal integration approaches (e.g., chemically inducible chromosomal evolution)
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[45] for modular pathway construction can potentially reduce the energy burden due to plasmid
maintenance.

Although MCE distributes the metabolic burden between multiple strains and exploits the
cellular resources of more than a single strain, a stable and reliable artificial microbial consor-
tium is more difficult to design and maintain than a single-host system. The coexistence and
phenotypic stabilization of the constituent strains are the main challenges. To overcome them,
systematic analysis and computational modeling can be applied to assess and predict the
compatibility of the constituent members and the module output of a coculture system.

Computational Approaches for Modular Strain and Coculture Engineering
In addition to the recent progress in experimental approaches, major advances in metabolic
engineering have been made possible by the rapid development of genome-scale metabolic
models (GSMs). Recent innovations in the construction and optimization of GSMs have
enhanced our ability to simulate phenotypes based on genomic information [46]. Furthermore,
the scaffolded nature of GSMs (Figure 4) has inspired the development of new methods for the
integration of transcriptomic or proteomic [47], codon usage [48], and kinetic [49,50] data to
improve the quantitative prediction of flux distribution. Because of the advances in the
predictive power of GSMs, implementing GSMs to analyze complex bioreactor production
systems is now possible (Box 2). Metabolic models have also provided a stable foundation to
build novel engineering strategies in modular cell design [51]. Here we review the computational
advances that are crucial for the implementation of innovative strategies for biobased chemical
production with an emphasis on the in silico design of modular strains and modular microbial
communities.

Augmenting GSMs to Identify Unexplored Engineering Strategies
In recent years, GSMs have been expanded to account for cellular molecular processes, such
as basal protein production and the macromolecular expression cost associated with peptide
biosynthesis [52]. These macromolecular expression models predict phenotypes by incorpo-
rating mathematical descriptions of transcription, tRNA charging, and translation. Likewise,
other modulators of metabolism, such as enzyme abundance and protein turnover, can also be
included as an additional layer of constraint. For example, the construction of an enzyme-
constrained model of S. cerevisiae allowed the identification of unintuitive engineering strate-
gies for biobased chemical production [49]. According to the model, while succinate produc-
tion could be increased through gene knockouts and biomass coupling in S. cerevisiae,
enhanced farnesene production can be achieved only by boosting enzyme activity and
abundance [49].

GSMs can also be harnessed to identify optimal targets for modular metabolic engineering. UP
Finder is a computational package that makes use of the genetic information in GSMs to find
gene expression patterns that are associated with higher production of the desired metabolic
compounds [53]. As an application of this method, GSMs of E. coli and Synechocystis sp. PCC
6803 were used to predict gene targets that could be overexpressed for increased production
of farnesyl pyrophosphate and fatty acyl-ACP, respectively [53]. In another recently developed
approach, prediction of transcriptional repressors was combined with GSMs and strain-
optimization algorithms to enable the adjustment of metabolic modules that control the
production of the desired biobased chemicals (e.g., shikimic acid, muconic acid) [54].
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Box 2. GSMs and Biobased Chemical Production in Bioreactors

Outstanding applications of GSMs in biobased chemical production beyond the bench scale are provided by the
development of models that account for the dynamics and complexity of the production systems. By integrating a GSM
and spatiotemporal modeling of a complex bioreactor, Chen and colleagues were able to model the dynamics of the
ethanol-producing strain Clostridium ljungdahlii in a bubble-column bioreactor and to optimize the theoretical biofuel
production of the microorganism by identifying initial feedstock conditions that could increase the ethanol titer [65]. In a
second work, a GSM and dynamic reactor modeling were applied to optimize production in photobioreactors [66]. In
this case, the computational model was capable of predicting the intracellular accumulation of metabolites and
identifying fed-batch cultivation strategies that optimized b-carotene production from varying feeding conditions of
light and nitrogen [66]. Future applications of GSMs for biobased chemical production are expected to be driven by the
improved accuracy provided by the genome-scale kinetic metabolic models. The integration of kinetic parameters, such
as the enzymatic efficiency for catalysis of product formation [protein turnover number (kcat)], as another layer of
constraints in computational models of metabolism can refine the accuracy of GSMs to predict metabolism dynamics
derived from genetic alterations [50,67]. However, the development of genome-scale kinetic metabolic models carries
an implicit and still unattended demand for large-scale and high-throughput screening techniques to obtain kinetic
parameters experimentally [68]. With continuous improvements in modeling, collaborations between computational and
experimental researchers are expected to increase in the biotechnology industry for scaling up and augmenting the
prospect of biobased chemical production.
In silico Design of Enhanced Modular Cell Systems
The construction of more comprehensive GSMs has opened new possibilities towards the
design of cellular systems with higher modularity. Novel in silico platforms for the design of
modular systems have adopted the metabolic engineering strategy in which biobased chemical
production can be either dependent [51] or independent [55] of cellular growth.

For E. coli, growth-dependent modular cells can be designed through two recently developed
approaches: MODCELL [51] and MinGenome [56]. MODCELL aims to identify in silico auxo-
trophic cells that can grow only when complementary metabolic modules (designated as
production modules) are provided to the cells [51]. The production modules can harbor the
metabolic pathways involved in biomass synthesis as well as those required to produce a
predefined biobased chemical. MODCELL has been applied computationally in the production
of short-chain alcohols and esters [51] and experimentally in ethanol production [57]. By
contrast, MinGenome incorporates the concept of genome minimization [56]. In this approach,
the modular cells of E. coli are designed by coupling its metabolic model to data concerning
transposons, operons, promoters, and transcription factors. MinGenome has successfully
predicted the gene deletions required to produce a reduced (minimal) genome suitable for
biobased chemical production [56]. For S. cerevisiae, modular cells have been designed in two
steps. First, exogenous metabolic pathways are appended to a GSM; second, flux balance
analysis (FBA) and strain-optimization algorithms are applied to predict combinations of gene
deletions that yield enhanced modular strains for biobased chemicals [58].

In contrast to the growth-dependent strategy, modular systems can also be designed by
incorporating orthogonal pathways in the metabolic network. The orthogonality concept
comprises modification of the global network structure to reduce the metabolic association
between the synthesis of the biomass and the target metabolite [55]; thus, biobased chemical
production is decoupled from the metabolism required to sustain growth. Orthogonal pathway
Figure 4. Metabolic Models for Biobased Chemical Production. A genome-scale metabolic model (GSM) is an open-ended platform to represent the
metabolism of an organism based on its enzymatic potential. Improvements in the prediction power of these models can be achieved through the integration of data
derived from diverse experimental approaches such as genetic perturbations (e.g., gene knockouts, auxotrophy), multiomics experiments (e.g., transcriptomics,
proteomics, metabolomics, fluxomics), molecular analyses (e.g., codon usage bias, translation efficiency), medium composition adjustment, and enzyme kinetics.
Spatial and temporal environmental fluctuations can be formulated using ordinary differential equations (ODEs) and partial differential equation (PDEs). Coculture
analysis, modeling, design, and optimization can be achieved by incorporating multiple GSMs. Hence, GSMs are multiscale platforms, enriched by systems and
synthetic biology, for investigating and optimizing biobased chemical production.
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Outstanding Questions
What types of biobased chemicals
have the greatest potential to replace
their counterparts currently produced
through the chemical route? Can we
accurately predict their chance of mar-
ket success based on applications,
production costs, and environmental
impacts?

What are the most effective computa-
tional approaches that can comple-
ment experimental modular
metabolic engineering to facilitate the
development of novel cell factories to
produce valuable compounds that are
difficult or infeasible via chemical
methods?

With the technical advances in
genome editing and metabolic engi-
neering, will the engineering of nonmo-
del organisms open new opportunities
to further enhance the titer, yield, pro-
ductivity, and range of biobased
chemicals?

Can we improve the predictability of
the experimental outcome of modular
systems by linking genome minimiza-
tion to orthogonal pathway design?

Can we improve control over modular
synthetic communities by coupling
mathematical formulations of dynamic
controls (e.g., biosensors, quorum
sensing, synthetic transcription fac-
tors) to metabolic models of consortia?
design has been applied to E. coli to demonstrate its advantages over the growth-dependent
strategy for the production of succinic acid, isobutanol, adipic acid, ethanol, 1,4-butanediol,
and 2,3-butanediol [55].

Analyzing Synthetic Microbial Communities
In addition to the vast potential of GSMs for single organisms, computational studies of
microbial consortia are also possible by coupling multiple GSMs to produce community-scale
metabolic models (CSMs) (Figure 4). CSMs have been successfully applied to analyze synthetic
microbial consortia. For instance, the community composition that maximizes the yield and
production rate of methane was assessed through FBA of metabolic models that incorporate
single, two, and three species [59]. However, FBA is unable to simulate the complex dynamics
of microbial consortia, and strategies to engineer microbial communities can be overlooked
when the analyses are limited to FBA. Overcoming the limitations of FBA, the dynamics in time
and space of microbial ecosystems can be modeled by implementing dynamic FBA. Such a
spatiotemporal modeling platform can be exemplified by COMETS [60] and BacArena [61].
Based on DFBA, COMETS has accurately predicted the unexpected metabolic interplay in two-
and three-strain synthetic communities of E. coli, Salmonella enterica, and Methylobacterium
extorquens. By contrast, based on individual-based modeling and FBA, BacArena has been
applied to unveil heterogeneous phenotypes in a two-strain community, single-species biofilm,
and multispecies human gut community.

Designing Synthetic Microbial Communities
In silico methods can also be employed to uncover engineering strategies to design microbial
consortia with the desired outcomes. For example, DFBA has revealed a synthetic coculture
design (yeast and microalgae) that has promising cost reduction for the industrial production of
biodiesels [62]. However, a priori knowledge about the uptake kinetic parameters of the two
organisms was required to find the appropriate engineering strategy, which is not ideal for
finding unexplored designs of synthetic microbial consortia.

Conversely, novel computational approaches can assume no previous knowledge about the
metabolism of individual strains composing the community. Instead, they harness genomic
information to find partners with the suitable metabolic potentials and produce designs of
synthetic microbial communities with predefined functions. This capability can be found in
CoMiDA [63] and MultiPus [64]. CoMiDA can identify strains required to construct a synthetic
consortium that produces a desired biobased chemical based on the genomes of the species
and nutrients available. MultiPus, by contrast, takes advantage of the topological information on
metabolism found in GSMs to identify consortia capable of producing metabolites of interest.
MultiPus has been used to study the theoretical production of penicillin, cephalosporin C, and
1,3-propanediol by various modular synthetic microbial communities [64].

Concluding Remarks and Future Perspectives
Biobased chemical production via modular metabolic engineering holds promise to revolution-
ize the chemical industry. MMME and MCE are effective modularization strategies to reconsti-
tute metabolic balance in single or multiple hosts. The modular design of these approaches not
only significantly expedites strain optimization for higher product yield and titer but also
facilitates pathway refactoring for the production of a wide range of biobased chemicals in
a plug-and-play fashion. Both MMME and MCE have benefited from insights generated by in
silico approaches for the construction of more efficient and versatile industrial microbial strains.
However, to industrialize biobased products on a large scale, both the economic and the
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technical aspects of pathway design, reconstruction, and optimization need to be carefully
considered (see Outstanding Questions).

Recognizing the synergic effects of microbial consortia, metabolic engineers are now striving to
further explore the deployment of multiple constituent strains to produce more structurally
complex compounds. Meanwhile, the advance of synthetic and genetic engineering tools will
expand the number of workhorse chassis to include more specialized strains with unique
proficiency. The increased number of constituent strains and possible host candidates along
with the possible pathway constructs will inevitably lead to more sophisticated coculture
systems that require extensive in silico analysis for rational design, construction, and optimi-
zation. To this end, the increasing comprehensiveness and predictive power of computational
tools derived from advances in systems and synthetic biology will provide metabolic engineers
with insights to explore new and more complex techniques for creating robust modular
cocultures to produce high-value compounds in a biobased economy.

Acknowledgments
This research was supported by the Research Grants Council of Hong Kong through Project 11206514. J.C.V. acknowl-

edges support provided by the Hong Kong PhD Fellowship Scheme (HKPFS). The authors thank Kang Zhou for providing

constructive comments on the manuscript.

References

1. Chen, Y. and Nielsen, J. (2013) Advances in metabolic pathway

and strain engineering paving the way for sustainable production
of chemical building blocks. Curr. Opin. Biotechnol. 24, 965–972

2. King, D. et al. (2010) The Future of Industrial Biorefineries, World
Economic Forum

3. Wu, G. et al. (2017) Metabolic burden: cornerstones in synthetic
biology and metabolic engineering applications. Trends Biotech-
nol. 34, 652–664

4. Ajikumar, P.K. et al. (2010) Isoprenoid pathway optimization for
taxol precursor overproduction in Escherichia coli. Science 330,
70–74

5. Lorenz, D.M. et al. (2011) The emergence of modularity in bio-
logical systems. Phys. Life Rev. 8, 129–160

6. Wu, J. et al. (2014) Modular optimization of heterologous path-
ways for de novo synthesis of (2S)-naringenin in Escherichia coli.
PLoS One 231, 183–192

7. Zhou, K. et al. (2015) Distributing a metabolic pathway among a
microbial consortium enhances production of natural products.
Nat. Biotechnol. 33, 377–383

8. Alper, H. and Stephanopoulos, G. (2009) Engineering for biofuels:
exploiting innate microbial capacity or importing biosynthetic
potential? Nat. Rev. Microbiol. 7, 715

9. Liu, D. et al. (2016) Enhancing fatty acid production in Escherichia
coli by Vitreoscilla hemoglobin overexpression. Biotechnol. Bio-
eng. 114, 463–467

10. Juminaga, D. et al. (2012) Modular engineering of L-tyrosine
production in Escherichia coli. Appl. Environ. Microbiol. 78,
89–98

11. McNerney, M.P. et al. (2015) Precision metabolic engineering: the
design of responsive, selective, and controllable metabolic sys-
tems. Metab. Eng. 31, 123–131

12. Boock, J.T. et al. (2015) Screening and modular design for
metabolic pathway optimization. Curr. Opin. Biotechnol. 36,
189–198

13. Biggs, B.W. et al. (2014) Multivariate modular metabolic engi-
neering for pathway and strain optimization. Curr. Opin. Biotech-
nol. 29, 156–162

14. Xu, P. et al. (2013) Modular optimization of multi-gene pathways
for fatty acids production in E. coli. Nat. Commun. 4, 1409
15. Liu, Y. et al. (2014) Modular pathway engineering of Bacillus
subtilis for improved N-acetylglucosamine production. Metab.
Eng. 23, 42–52

16. Wu, J. et al. (2013) Multivariate modular metabolic engineering of
Escherichia coli to produce resveratrol from L-tyrosine. J. Bio-
technol. 167, 404–411

17. Zhang, H. and Wang, X. (2016) Modular co-culture engineering, a
new approach for metabolic engineering. Metab. Eng. 37, 114–
121

18. Chen, Z. et al. (2017) Metabolic engineering of Escherichia coli for
microbial synthesis of monolignols. Metab. Eng. 39, 102–109

19. Brenner, K. et al. (2008) Engineering microbial consortia: a new
frontier in synthetic biology. Trends Biotechnol. 26, 483–489

20. Zhang, H. et al. (2015) Engineering Escherichia coli coculture
systems for the production of biochemical products. Proc. Natl.
Acad. Sci. U. S. A. 112, 8266–8271

21. Wang, G. et al. (2017) Exploring the potential of Saccharomyces
cerevisiae for biopharmaceutical protein production. Curr. Opin.
Biotechnol. 48, 77–84

22. Jones, J.A. et al. (2016) Experimental and computational optimi-
zation of an Escherichia coli co-culture for the efficient production
of flavonoids. Metab. Eng. 35, 55–63

23. Saini, M. et al. (2015) Potential production platform of n-butanol in
Escherichia coli. Metab. Eng. 27, 76–82

24. Wen, Z. et al. (2017) Enhanced solvent production by metabolic
engineering of a twin-clostridial consortium. Metab. Eng. 39, 38–
48

25. Jones, J.A. et al. (2017) Complete biosynthesis of anthocyanins
using E. coli polycultures. mBio 8, e00621-17

26. Lv, H. et al. (2016) Transporter and its engineering for secondary
metabolites. Appl. Microbiol. Biotechnol. 100, 6119–6130

27. Faust, K. and Raes, J. (2012) Microbial interactions: from net-
works to models. Nat. Rev. Microbiol. 10, 538

28. Saini, M. et al. (2016) Production of biobutanol from cellulose
hydrolysate by the Escherichia coli co-culture system. FEMS
Microbiol. Lett. 363, fnw008

29. Zhang, H. and Stephanopoulos, G. (2016) Co-culture engineering
for microbial biosynthesis of 3-amino-benzoic acid in Escherichia
coli. Biotechnol. J. 11, 981–987
Trends in Biotechnology, February 2019, Vol. 37, No. 2 165

http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0005
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0005
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0005
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0010
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0010
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0015
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0015
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0015
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0020
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0020
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0020
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0025
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0025
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0030
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0030
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0030
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0035
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0035
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0035
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0040
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0040
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0040
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0045
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0045
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0045
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0050
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0050
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0050
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0055
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0055
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0055
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0060
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0060
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0060
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0065
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0065
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0065
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0070
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0070
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0075
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0075
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0075
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0080
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0080
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0080
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0085
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0085
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0085
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0090
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0090
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0095
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0095
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0100
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0100
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0100
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0105
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0105
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0105
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0110
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0110
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0110
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0115
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0115
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0120
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0120
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0120
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0125
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0125
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0130
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0130
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0135
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0135
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0140
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0140
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0140
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0145
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0145
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0145


30. Wang, E.X. et al. (2016) Reorganization of a synthetic microbial
consortium for one-step vitamin C fermentation. Microb. Cell
Fact. 15, 21

31. Wu, J. et al. (2017) A systematic optimization of medium chain
fatty acid biosynthesis via the reverse beta-oxidation cycle in
Escherichia coli. Metab. Eng. 41, 115–124

32. Camacho-Zaragoza, J.M. et al. (2016) Engineering of a microbial
coculture of Escherichia coli strains for the biosynthesis of res-
veratrol. Microb. Cell Fact. 15, 163

33. Fujiwara, R. et al. (2016) Styrene production from a biomass-
derived carbon source using a coculture system of phenylalanine
ammonia lyase and phenylacrylic acid decarboxylase-expressing
Streptomyces lividans transformants. J. Biosci. Bioeng. 122,
730–735

34. Nakagawa, A. et al. (2016) Total biosynthesis of opiates by
stepwise fermentation using engineered Escherichia coli. Nat.
Commun. 7, 10390

35. Dai, Z. et al. (2012) Production of miltiradiene by metabolically
engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 109,
2845–2853

36. Lv, X. et al. (2016) Combinatorial pathway optimization in Escher-
ichia coli by directed co-evolution of rate-limiting enzymes and
modular pathway engineering. Biotechnol. Bioeng. 113, 2661–
2669

37. Wu, J. et al. (2013) Metabolic engineering of Escherichia coli for
(2S)-pinocembrin production from glucose by a modular meta-
bolic strategy. Metab. Eng. 16, 48–55

38. Wu, J. et al. (2016) Stepwise modular pathway engineering of
Escherichia coli for efficient one-step production of (2S)-pinocem-
brin. J. Biotechnol. 231, 183–192

39. Wu, J. et al. (2017) Rational modular design of metabolic network
for efficient production of plant polyphenol pinosylvin. Sci. Rep. 7,
1459

40. Xia, T. et al. (2015) Succinate production from xylose-glucose
mixtures using a consortium of engineered Escherichia coli. Eng.
Life Sci. 15, 65–72

41. Zhang, H. et al. (2015) Engineering E. coli–E. coli cocultures for
production of muconic acid from glycerol. Microb. Cell Fact. 14,
134

42. Ahmadi, M.K. et al. (2016) E. coli metabolic engineering for gram
scale production of a plant-based anti-inflammatory agent.
Metab. Eng. 38, 382–388

43. Liu, Y. et al. (2017) A three-species microbial consortium for
power generation. Energy Environ. Sci. 10, 1600–1609

44. Wu, S.G. et al. (2015) An ancient Chinese wisdom for metabolic
engineering: Yin-Yang. Microb. Cell Fact. 14, 39

45. Tyo, K.E.J. et al. (2009) Stabilized gene duplication enables long-
term selection-free heterologous pathway expression. Nat. Bio-
technol. 27, 760

46. O’Brien, E.J. et al. (2015) Using genome-scale models to predict
biological capabilities. Cell 161, 971–987

47. Tian, M. and Reed, J.L. (2018) Integrating proteomic or tran-
scriptomic data into metabolic models using linear bound flux
balance analysis. Bioinformatics Published online June 5, 2018.
http://dx.doi.org/10.1093/bioinformatics/bty445

48. Kashaf, S.S. et al. (2017) Making life difficult for Clostridium
difficile: augmenting the pathogen’s metabolic model with tran-
scriptomic and codon usage data for better therapeutic target
characterization. BMC Syst. Biol. 11, 25

49. Sánchez, B.J. et al. (2017) Improving the phenotype predictions
of a yeast genome-scale metabolic model by incorporating enzy-
matic constraints. Mol. Syst. Biol. 13, 935
166 Trends in Biotechnology, February 2019, Vol. 37, No. 2
50. Dash, S. et al. (2017) Development of a core Clostridium ther-
mocellum kinetic metabolic model consistent with multiple
genetic perturbations. Biotechnol. Biofuels 10, 108

51. Trinh, C.T. et al. (2015) Rational design of efficient modular cells.
Metab. Eng. 32, 220–231

52. Lloyd, J.C. et al. (2018) COBRAme: a computational framework
for genome-scale models of metabolism and gene expression.
PLoS Comput. Biol. 14, e1006302

53. Wang, X. et al. (2017) UP Finder: a COBRA toolbox extension for
identifying gene overexpression strategies for targeted overpro-
duction. Metab. Eng. Commun. 5, 54–59

54. Suástegui, M. et al. (2017) Multilevel engineering of the upstream
module of aromatic amino acid biosynthesis in Saccharomyces
cerevisiae for high production of polymer and drug precursors.
Metab. Eng. 42, 134–144

55. Pandit, A.V. et al. (2017) Redesigning metabolism based on
orthogonality principles. Nat. Commun. 8, 15188

56. Wang, L. and Costas, M. (2018) MinGenome: an in silico top-
down approach for the synthesis of minimized genomes. ACS
Synth. Biol. 7, 462–473

57. Wilbanks, B. et al. (2018) A prototype for modular cell engineer-
ing. ACS Synth. Biol. 7, 187–199

58. Jouhten, P. et al. (2016) Yeast metabolic chassis designs for
diverse biotechnological products. Sci. Rep. 6, 29694

59. Koch, S. et al. (2016) Predicting compositions of microbial com-
munities from stoichiometric models with applications for the
biogas process. Biotechnol. Biofuels 9, 17

60. Harcombe, W.R. et al. (2014) Metabolic resource allocation in
individual microbes determines ecosystem interactions and spa-
tial dynamics. Cell Rep. 7, 1104–1115

61. Bauer, E. et al. (2017) BacArena: individual-based metabolic
modeling of heterogeneous microbes in complex communities.
PLoS Comput. Biol. 13, e1005544

62. Gomez, J.A. et al. (2015) From sugars to biodiesel using micro-
algae and yeast. Green Chem. 18, 461–475

63. Eng, A. and Borenstein, E. (2016) An algorithm for designing
minimal microbial communities with desired metabolic capacities.
Bioinformatics 32, 2008–2016

64. Julien-Laferrière, A. et al. (2016) A combinatorial algorithm for
microbial consortia synthetic design. Sci. Rep. 6, 29182

65. Chen, J. et al. (2016) Spatiotemporal modeling of microbial
metabolism. BMC Syst. Biol. 10, 21

66. Flassig, R.J. et al. (2016) Dynamic flux balance modeling to
increase the production of high-value compounds in green micro-
algae. Biotechnol. Biofuels 9, 165

67. Khodayari, A. and Costas, D.M. (2016) A genome-scale Escher-
ichia coli kinetic metabolic model k-ecoli457 satisfying flux data
for multiple mutant strains. Nat. Commun. 7, 13806

68. Nilsson, A. et al. (2017) Metabolic models of protein allocation call
for the kinetome. Cell Syst. 5, 538–541

69. Zhao, J. et al. (2013) Engineering central metabolic modules of
Escherichia coli for improving Β-carotene production. Metab.
Eng. 17, 42–50

70. Galanie, S. et al. (2015) Complete biosynthesis of opioids in yeast.
Science 349, 1095–1100

71. Willrodt, C. et al. (2015) Coupling limonene formation and oxy-
functionalization by mixed-culture resting cell fermentation. Bio-
technol. Bioeng. 112, 1738–1750

http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0150
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0150
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0150
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0155
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0155
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0155
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0160
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0160
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0160
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0165
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0165
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0165
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0165
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0165
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0170
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0170
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0170
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0175
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0175
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0175
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0180
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0180
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0180
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0180
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0185
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0185
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0185
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0190
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0190
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0190
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0195
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0195
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0195
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0200
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0200
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0200
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0205
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0205
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0205
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0210
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0210
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0210
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0215
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0215
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0220
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0220
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0225
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0225
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0225
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0230
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0230
http://dx.doi.org/10.1093/bioinformatics/bty445
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0240
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0240
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0240
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0240
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0245
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0245
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0245
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0250
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0250
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0250
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0255
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0255
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0260
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0260
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0260
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0265
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0265
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0265
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0270
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0270
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0270
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0270
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0275
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0275
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0280
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0280
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0280
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0285
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0285
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0290
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0290
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0295
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0295
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0295
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0300
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0300
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0300
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0305
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0305
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0305
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0310
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0310
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0315
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0315
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0315
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0320
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0320
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0325
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0325
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0330
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0330
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0330
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0335
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0335
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0335
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0340
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0340
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0345
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0345
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0345
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0350
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0350
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0355
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0355
http://refhub.elsevier.com/S0167-7799(18)30194-X/sbref0355

	Modular Metabolic Engineering for Biobased Chemical Production
	Building a Biobased Economy with Modular Engineering
	MMME: A Focused Combinatorial Engineering Approach
	MCE: A Spatial Pathway Modularization Approach
	Host Selection and Pathway Division
	Microbial Interactions as Strategies to Improve Production
	MMME and MCE Expedite Strain Optimization and Facilitate Pathway Refactoring
	Challenges of Implementing MMME and MCE
	Computational Approaches for Modular Strain and Coculture Engineering
	Augmenting GSMs to Identify Unexplored Engineering Strategies
	In silico Design of Enhanced Modular Cell Systems
	Analyzing Synthetic Microbial Communities
	Designing Synthetic Microbial Communities
	Concluding Remarks and Future Perspectives
	Acknowledgments
	References


